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ABSTRACT 
The fate and potential risks of endocrine disrupting chemicals (EDCs) in treated sewage effluents 
remain to be fully characterised. This study applied a combination of chemical analysis and 
in vitro and in vivo bioassays to assess the efficacy of an advanced tertiary sewage treatment 
plant to remove EDCs. Samples from all treatment stages contained measurable concentrations 
of alkylphenol compounds and bisphenol A (BPA); only the post-sandfilter effluent contained 
measurable concentrations of the estrogenic steroid estrone (E1). Bioassay results indicated that 
the treatment technology of this plant removed estrogenicity to concentrations below the detection 
limits. Mosquitofish (Gambusia holbrooki) and the Australian native rainbowfish (Melanotaenia 
fluviatilis) were exposed to the sandfilter and final effluents and 17β-estradiol as a positive control 
for seven days on-site at the treatment plant. Vitellogenin mRNA, a biomarker of estrogenicity 
in fish, was measured by rtPCR. Estrogenicity was detected in the sandfilter effluent by the yeast 
assay, but the activity was not at a level that modulated up-regulation of vitellogenin mRNA in 
either exposed fish species.

Keywords: In situ; two-hybrid yeast reporter gene assays; mosquitofish; rainbowfish; vitellogenin; 
rtPCR

INTRODUCTION 
Sewage effluents can contain numerous biologically active chemicals including naturally produced, 
synthetic medicinal, and industrial estrogenic endocrine disrupting chemicals (EDCs) (Auriol et al. 
2006; Jalova et al. 2013; Khanal et al. 2006; Liu et al. 2009). The effects of estrogenic EDCs on 
the reproductive success of fish include reduced egg-laying capacity (Oshima et al. 2003; Santos 
et al. 2007), decreased hatching success (Shioda and Wakabayashi 2000) and skewed sex ratios 
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of offspring (Nimrod and Benson 1998). Evidence of estrogenic endocrine disruption has been 
reported in wild populations of fish living in waters receiving treated sewage effluent (Batty and 
Lim 1999; Jobling et al. 2002; Rawson et al. 2008). However, other studies have found no evidence 
of endocrine disruption in fish exposed to sewage effluent or in in vitro assays (Braga et al. 2005; 
Carballo et al. 2005; Douxfils et al. 2007; Leusch et al. 2006; Neale et al. 2020). 

The application of in vitro estrogenic bioassays has demonstrated that advanced tertiary treatment 
technologies can significantly reduce the concentration of EDCs in sewage effluent (Hamilton et al. 
2021; Leusch et al. 2005a; Liu et al. 2009). Advanced sewage treatment technologies are designed 
to significantly reduce concentrations of recalcitrant micro-contaminants and their potential risk 
(Boake 2006; Hamilton et al. 2021; Hamilton et al. 2016; Roberts et al. 2015), and provide a valuable 
option to address increasing water scarcity through the recycling of treated wastewater. However, 
the integration of treated wastewater back into the water cycle is reliant upon sound data on the 
concentration and effects of residual EDCs and other micro-contaminants, and robust assessments 
of the risks they pose to wildlife and humans. 

The application of in vivo approaches to assess the effects of micro-contaminants upon organisms 
exposed to treated wastewater is becoming more common (Barber et al. 2007; Garcia-Reyero et al. 
2011; Roberts et al. 2015; Vajda et al. 2015). Incorporation of such approaches in bioassessment 
studies provides information of greater ecological significance than in vitro assessment alone (Adams 
and Tremblay 2003). Vitellogenin (VTG) up-regulation in male fish is a well-established biomarker 
used in in vivo assessment of endocrine disruption in fish exposed to sewage effluent (Aerni et al. 
2004; Barber et al. 2007; Jones et al. 2000; Sole et al. 2001; Vajda et al. 2015; Woods and Kumar 
2011). When exposed to exogenous (xeno)-estrogens, production of VTG can be stimulated and 
quantified in the blood plasma or through measurement of hepatic vtg mRNA.

The mosquitofish (Gambusia holbrooki Girard 1859) was chosen as an in vivo test species for 
exposure to EDCs as it is a small, fast growing, common feral species in Australian waters that has 
previously been studied for developmental and reproductive changes caused by estradiol exposure 
(Doyle and Lim 2005; Leusch et al. 2005b). The Murray River rainbowfish (Melanotaenia fluviatilis 
Castelnau 1878) was chosen as a small, fast growing indigenous species that has been used as a 
native model test species to assess the effects of EDCs (Pollino et al. 2007; Woods and Kumar 2011).

This study assessed the efficacy of advanced tertiary treatment technology to remove estrogenicity 
from municipal wastewater using combined analytical chemistry and in vitro and in vivo bioassay 
approaches. On-site exposure tests were used to determine whether the sandfilter and final effluents 
would induce vtg in males of G. holbrooki and M. fluviatilis (Vajda et al. 2015).

Figure 1. Schematic of the GGSTP and locations of effluent samples for the fish exposure 
experiments.
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MATERIALS AND METHODS

Fish flow-through test system
This study was conducted at the Gerringong-Gerroa sewage treatment plant (GGSTP), New South 
Wales, Australia. The GGSTP is an advanced tertiary treatment plant incorporating continuous 
backwashing sand filtration, ozonation (O3), biological activated carbon filtration (BAC), 
microfiltration and UV disinfection after activated sludge treatment with nitrification/denitrification 
(Biodenipho (Veolia Water Technologies)) and clarification (Figure 1) (Boake 2006).

Two fish exposure experiments were carried out in November 2008 (Expt 1) and February 2009 
(Expt 2). Each test was conducted for 7 days.

A series of 20-L glass flow-through treatment tanks were set up on site at the GGSTP. Process feed 
water from the sandfilter and final effluent outlets and well aerated mains water were plumbed into 
the test room and distributed to header and treatment tanks.

The treatments consisted of triplicate flow-through exposure tanks containing sandfilter effluent, 
final effluent (Figure 1), mains water negative controls and a positive control treatment dosed with 
17β-estradiol (E2). Every exposure tank had its own header tank to avoid confounding effects 
of pseudoreplication and to ensure continuous flow to the exposure tanks, including the periods 
when the advanced tertiary treatment stages were not running, typically overnight during reduced 
influent flows. The mains water used in the negative control treatment passed through a partially 
recirculating system that enabled the header tanks to provide an aerating and aging stage for the 
removal of any residual chlorine. 

The treatment tanks were gravity fed water from their respective header tank to ensure they were 
continuously replenished. The average flow rate from the header to exposure tanks was 5.4 ± 1.5 
L/h during the November 2008 test (Expt 1) and 6.9 ± 1.5 L/hour during the February 2009 test 
(Expt 2), corresponding to average 99% volume replacement rates of 18.0 ± 4.5 and 13.8 ± 2.7 
hours respectively for the November 2008 and February 2009 tests.

The positive control treatments comprised final treated effluent continually dosed with a solution 
of estradiol in methanol to achieve a nominal exposure concentration of 100 ng/L E2. 

In the November 2008 experiment, each exposure tank was stocked with eight male mosquito fish, 
and in the February 2009 test, each exposure tank was stocked with four adult male Murray River 
rainbowfish. Fish were fed daily with commercially available fish food flakes except for the first 
and last days of the exposure test. 

The water temperature, dissolved oxygen, conductivity and pH of each treatment tank were 
monitored daily.

An eight-channel peristaltic pump (Gilson) fitted with fluorinated ethylene propylene (FEP) tubing 
was used to take time-integrated daily 24-h composite samples from one of the replicate exposure 
tanks for each treatment. The 24-hour composite samples were collected in pre-cleaned 4-L glass 
amber bottles that were packed in ice to reduce analyte degradation. The collected samples were 
acidified with concentrated H2SO4 to pH 2. They were filtered, split into two 1-L samples and 
extracted at the on-site laboratory immediately upon collection, one for chemical analysis and the 
other for in vitro bioassay.

Chemical analysis
The filtered 1-L wastewater samples collected were spiked with 25 ng of carbon-13 (13C) labelled 
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surrogate standard mix (3,4-13C2 for αE2 and E2, 20,21-13C2 for ethinyl estradiol (EE2), E1-13C for 
estrone (E1) and estriol (E3), BPA-13C12 for BPA, triclosan-13C12 (99%) for triclosan, and 4-n-NP-d4 
for the nonylphenols). 

All samples (for chemistry and bioassay) were extracted through solvent-rinsed and conditioned 500-
mg Oasis HLB cartridges (Waters™). Target analytes were eluted with a mixture of dichloromethane: 
methanol (95:5) and passed directly through a serially connected Florisil column (IST, 500 mg 
Isolute) containing a 500-mg layer of sodium sulfate to remove residual water. The sample extracts 
for chemical analysis were further cleaned up using gel permeation chromatography (GPC). 
Dichloromethane:methanol (95:5) was used as the mobile phase and the fraction containing the 
target analytes was collected.

Deuterated internal standards (nonylphenol-d8, triclosan-d3, bisphenol-A-d16, E2-d4, E1-d4, 
EE2-d4) were added to the extracts for chemical analysis which were derivatised by silylation with 
N-Methyl-N-(trimethylsilyl)trifluoroacetamide (MSTFA) using the method previously described 
(Labadie and Budzinski 2005). Analysis was performed using an Agilent 6890N gas chromatograph 
with split/splitless injector, PAL multipurpose auto-sampler, and Agilent 5975 quadrupole mass 
selective detector (MSD). Mass spectrometric data were acquired in single ion monitoring (SIM) 
and the concentrations of internal standard, target and surrogate compounds were determined using 
Agilent Chemstation quantification software with internal standard quantitation as previously 
described (Hamilton et al. 2016). 

Limits of detection (LODs) for the target analytes were determined for the different effluent 
matrices using a combination of 3x signal:noise ratio as a minimum detectable peak and a relative 
ion abundance acceptance criterion of 20%.

Two-hybrid yeast bioassay
Sample solvent extracts destined for two-hybrid yeast bioassay analysis were evaporated under a 
gentle stream of nitrogen and immediately redissolved in 100 µL of dimethyl sulfoxide. The assay 
uses a genetically modified yeast two-hybrid system where an estrogen nuclear receptor and the 
TIF2 coactivator have been inserted into the yeast expression plasmid before being transfected 
to Saccharomyces cerevisiae (Y190 strain) (Hamilton et al. 2021; Nishikawa et al. 1999). This 
bioassay method uses a 96-well plate set-up and the production of β-galactosidase is quantified as 
the measure of transcriptional activity (Arulmozhiraja et al. 2005). Modifications included the use 
of zymolase 100T for the enzymatic digestion agent and conducting the assay in Nunc white 96 
well plates (In vitro Technologies, Australia). Samples were separately assayed using two yeast-
based systems, one transfected with the human ERα (hER) and the other with the medaka fish ERα 
(medER) estrogen receptors (Hamilton et al. 2021). The final results were reported in estradiol 
equivalence (EEq) for the ECx10 which represents a chemiluminescent signal ten times higher 
than that of the blank. The EEq corresponds to the concentration of the natural ligand E2 that would 
elicit a similar response as the test sample in the assay.

vitellogenin analysis by quantitative PCR
At the end of the fish exposure period, the fish were removed from the exposure tanks, euthanised 
and the livers were removed and immediately added to 2.0-mL microcentrifuge tubes containing 
200 µL RNAlaterTM (Qiagen).

RNA was extracted using either the QIAGEN® RNeasy®  micro or mini total RNA isolation kit 
(QIAGEN) following the manufacturer’s protocol. For mosquitofish, vtg was quantified using a 
multiplex one-step PCR reaction using LUX (Invitrogen) labelled primers (Leusch et al. 2005b). For 
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the rainbowfish, RNA reverse transcription to cDNA was performed using RT primer mix (oligo-dT 
and random primers) QuantiTect Reverse Transcription Kit (QIAGEN®) prior to quantification of 
vtg using QuantiTect SYBR Green PCR mix (QIAGEN®) (Woods and Kumar 2011). Both methods 
normalised vtg up-regulation to the housekeeping gene 18S ribosomal RNA. The up-regulation of 
vtg in the fish from the treatment tanks was evaluated graphically using the relative quantification 
method (2-∆∆Ct) (Livak and Schmittgen 2001) incorporating standard error of the mean calculations 
(Bookout and Mangelsdorf 2003). vtg Ct values were converted to ∆Ct for each fish by subtracting 
the 18S rRNA Ct. Relative fold change ∆∆Ct for each treatment was calculated by subtracting the 
average ∆Ct of the control tank from the average ∆Ct for each treatment. Relative up-regulation 
was calculated as 2-∆∆Ct. For statistical analysis ∆Ct values for individual fish were used.

Data analysis
The average concentrations of EDCs and the average responses in the two-hybrid yeast assay 
measured in the 24-hour composite samples were calculated using Kaplan-Meier empirical 
cumulative distribution functions (K-M ECDF) generated using the NADA package (Lee 2009) 
in R software 2.9.1 (R Core Team 2009). The difference in responses of the two-hybrid yeast 
bioassays between the treatment tanks was tested by comparing the K-M ECDFs using the cendiff 
function in the NADA package (Lee and Helsel 2007). Bonferroni corrected p-values were used 
for post-hoc paired comparisons.

There was a significant difference (p<0.05) between the final effluent replicate tanks in the November 
2008 experiment. There was no significant difference in the ∆Ct vtg up-regulation between fish in 
the February 2009 replicate tanks (one-way ANOVA or Kruskal-Wallis non-parametric rank test 
(p>0.05)). However, considering the other three treatments were not significant, it was decided 
to still use the individual fish responses as individual replicates. One-way ANOVA or Kruskal-
Wallis tests were also used to test for differences between treatments (control, sandfilter, final (UV) 
and positive control tanks) for each experiment. Dunnett’s test was used for comparing the ∆Ct 
values for each treatment to those of the control tank using the multcomp function (Hothorn et al. 
2008) in R and using the sandwich function which uses treatment variance when the variance was 
significantly different between treatments.

RESULTS
Experimental conditions
In each fish exposure experiment, the temperature was generally similar between the tanks and 
there were minimal differences in the pH (Table 1). The dissolved oxygen (DO) content was similar 
between all treatments because aerators were used in all tanks. During exposure experiments, aerators 
were used in the header tanks of the mains water control treatments to facilitate de-chlorination. 
This produced variation in the measured DO content between the treatment tanks, and the DO 
content of the mains water negative control tanks were slightly higher than that in the other tanks 
(Table 1). The conductivity in the water of the mains control tanks was much lower than that of 
the treatment tanks, reflecting the higher ionic strength of the effluent feeds compared to the mains 
treated drinking water (Table 1).

Concentrations of EDCs in the 24-hour composite exposure tank samples
The validation of the analytical chemistry method used to measure selected EDCs is summarised in 
Table 2. The concentrations of target EDCs measured in the water of the sandfilter and final effluents 
exposure tanks were low in both fish exposure experiments (Figure 2). E1 was the only steroid 
estrogen detected in the sandfilter water samples in both experiments, with an average concentration 
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of 7.0 ± 0.8 ng/L. E3 was detected in one sandfilter effluent sample at a concentration of 40.6 ng/L. 

In comparison to the estrogenic steroids, synthetic industrial phenols were regularly detected in the 
sandfilter and final effluent treatment tank samples in both exposure experiments, but only tertiary 
NP and BPA were present at concentrations above 10 ng/L. The average concentrations of tertiary 
NP and BPA were lower in the November 2008 (mosquitofish) than the February 2009 (rainbowfish) 
experiments. High concentrations of BPA were measured in the mains water control tank treatments 
for both experiments, being 2237 ± 227 ng/L in November 2008 and reducing to 182.6 ± 46.7 ng/L 
in February 2009. Analysis of the mains water taken from the on-site laboratory demonstrated it 

Table 1: Water quality conditions measured (Average ± standard deviation)  during on-site flow-
through fish exposure experiments. Averages are from daily measurements of all tanks during 
the experimental period.

pH Dissolved O2 (%)
Conductivity  

(µS/cm)
Temperature (°C)

November 2008

Control 7.3 ± 0.2 94.6 ± 3.4 161.5 ± 2.3 21.2 ± 0.7

Sandfilter 7.2 ± 0.1 80.7 ± 6.5 594.4 ± 10.6 21.7 ± 0.8

Final Effluent 7.2 ± 0.1 76.8 ± 5.5 590.3 ± 7.5 22.7 ± 0.5

Positive Control 7.2 ± 0.1 81.4 ± 7.2 587.6 ± 21.7 22.5 ± 0.6

February 2009

Control 7.1 ± 0.1 83.7 ± 2.6 168.1 ± 3.4 24.4 ± 0.6

Sandfilter 7.1 ± 0.2 79.2 ± 6.0 638.4 ± 7.6 24.3 ± 0.8

Final Effluent 6.9 ± 0.1 71.9 ± 4.2 638.5 ± 12.7 25.6 ± 0.7

Positive Control 6.9 ± 0.1 69.9 ± 5.2 638.3 ± 5.4 25.4 ± 0.7

Table 2: Average ± standard deviation of recovery (%) for different sample matrices and 
different isotopic labelled EDC analogues. The 13C labelled compounds were used as surrogate 
recovery standards in the November 2008 and February 2009 fish exposure experiments. The 
blank sample is to provide a background baseline. 

Matrix triclosan-13C BPA-13C E1-13C E2-13C EE2-13C

November 2008

Control 87 ± 9 81 ± 10 79 ± 9 79 ± 9 64 ± 6

Sandfilter 95 ± 22 79 ± 22 92 ± 21 88 ± 24 78 ± 22

Final Effluent 76 ± 10 70 ± 10 73 ± 14 71 ± 11 61 ± 5

Positive Control 80 ± 3 74 ± 3 82 ± 5 107 ± 13 60 ± 4

Blank 80 ± 3 77 ± 5 77 ± 4 78 ± 4 65 ± 3

Mains 90 ± 8 67 ± 10 62 ± 14 58 ± 18 47 ± 11

February 2009

Matrix BPA-d16 E1-d4 E2-d4 EE2-d4

Control NA 104 ± 8 129 ± 41 151 ± 8 180 ± 13

Sandfilter NA 108 ± 25 125 ± 28 148 ± 28 171 ± 46

Final Effluent NA 114 ± 5 129 ± 34 160 ± 6 186 ± 22

NA - not assessed.

Hamilton et al. • Fish biomarkers to assess estrogenicity • Vol. 8, 2022, pp. 1-16
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was not the source of BPA. The suspected source of BPA in the mains water treatment tanks is 
leaching from piping, fittings, and sealants employed in the installation of piping to deliver the 
process effluents and mains water to the microfiltration room where the exposure tanks were housed. 

The concentration of E2 measured in the mains water positive control treatments was 107.6 ± 32.9 
and 73.8 ± 16.9 ng/L, respectively for experiments 1 and 2. The concentration of E2 measured in 
the positive control treatment tanks was initially higher and decreased over the 7-day duration of 
the fish exposure experiments. Conversely, the concentration of E1 in the mains water positive 

Figure 2. Average concentrations of EDCs measured in 24-hour composite samples taken from 
a representative tank for each treatment of the fish flow-through exposure experiments in 
November 2008 and February 2009. Error bars represent the standard deviation. BDL – below 
detection level. BPA: bisphenol A, E2: 17β estradiol, TNP: tert-nonylphenol, E1: estrone, tAP: 
tert-amylphenol, tOP: tert-octylphenol.

Hamilton et al. • Fish biomarkers to assess estrogenicity • Vol. 8, 2022, pp. 1-16
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control treatments increased over the course of each exposure experiment, demonstrating that 
E2 was increasingly degraded to E1 over the duration of the exposure experiments. The average 
concentrations of E1 measured in the positive control treatments over the course of 2 experiments 
were 9.9 ± 10.7 and 12.6 ± 5.7 ng/L, respectively.

Two-hybrid yeast response in the 24-hour composite exposure tank samples
The responses in the two-hybrid yeast bioassays demonstrated a low concentration of estrogenicity 
in the water of the control tanks in both fish exposure experiments (Figure 3).

The medER two-hybrid yeast is more responsive to synthetic phenols than the hER two-hybrid yeast. 
During all three testing periods the medER two-hybrid yeast displayed a higher response than the 
hER two-hybrid yeast in the water of the control tanks, indicating that this response may be due to 
the synthetic phenolic chemicals detected by chemical analysis. The average hER yeast responses 
in the control tanks were 2.0 ± 0.7 and 1.2 ± 0.6 ng/L EEq for the mosquitofish and rainbowfish 
experiments, respectively. The average medER yeast responses in the water of the control tanks were 
11.4 ± 1.4 and 7.6 ± 1.8 ng/L EEq for the mosquitofish and rainbowfish experiments, respectively.

Figure 3. Average estrogenic response in the hER (black) and medER (white) two-hybrid yeast 
assay for the 24-hour composite samples taken in the November 2008 and the February 2009 
fish flow-through exposure experiments. Error bars represent the standard deviation. Columns 
with the same letter above them are not significantly different (p>0.05). Lower case letters are 
for hER and upper case for medER responses. BDL – below detection level.

Figure 4: vitellogenin upregulation relative to the average vitellogenin up-regulation in fish from 
the control tanks for a) the November 2008 exposure experiment for G. holbrooki and b) the 
February 2009 exposure experiment for M. fluviatilis. Error bars represent the standard error 
of the mean (SEM). * indicates p<0.5 and *** indicates p<0.001 for the significant difference to 
the control by Dunnett test.

Hamilton et al. • Fish biomarkers to assess estrogenicity • Vol. 8, 2022, pp. 1-16
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There was a significant difference (p<0.05) between treatments in all fish exposure experiments 
for both the hER and medER two-hybrid yeast responses. In both fish exposure experiments, the 
sandfilter effluent had a significantly higher hER response than that of the respective control water 
and final effluent (Bonferroni corrected p<0.008). The final effluent also had a significantly lower 
response in medER yeast than that of the control water and sandfilter effluent (p<0.008). Both the 
medER and hER two-hybrid yeast responses were significantly elevated (p<0.008) in the positive 
control water above that of the control water, sandfilter and final effluents.

vitellogenin up-regulation in males of Gambusia holbrooki and 
Melanotaenia fluviatilis 
vitellogenin in mosquito fish exposed to either the sandfilter or final effluents was not significantly 
up-regulated above that of male fish in control water (Kruskal-Wallis rank sum test, chi-squared  
= 2.0, df = 2, p = 0.352). The relative fold induction was in fact, below one for fish from the 
sandfilter and final effluent tanks when comparing vtg up-regulation to that in the control tank 
treatments (2-∆Ct) (Figure 4).

vitellogenin up-regulation was observed in fish in the positive control tanks spiked with E2 in the 
November (G. holbrooki) and February experiment (M. fluviatilis) that exhibited significantly lower 
∆Ct values than the fish in the (negative) control tank (Dunnett multiple contrasts test, mosquitofish 
p<0.001, rainbowfish p<0.05). 

The fish from the negative control treatments had no detectable vtg up-regulation. For statistical 
analysis, the ∆Ct for individual fish from these treatments was calculated as 45 minus 18S Ct. Relative 
fold induction was calculated using the samples that had detectable vtg (n = 2). This was not due 
to problems with the samples or the qPCR reaction, as the 18S Ct was not significantly different 
in fish from the different treatment tanks (one-way ANOVA, df = 3,32, F = 0.0192, p = 0.9963) 
indicating similar reaction efficiencies between treatments. The Ct and delta Ct values for all three 
fish exposure experiments are presented in Table 3.

Table 3: Average cycle thresholds (Ct) for of vitellogenin and the housekeeping gene 18S and the 
average normalised vtg up-regulation (∆Ct) and change in Ct relative to the normalised vtg up-
regulation in control tank fish (-∆∆Ct). Error (±) is the standard deviation and brackets contain 
number of quantifications for treatments that did not have quantifiable vtg for all fish.

Treatment 18S rRNA Ct vtg mRNA Ct ∆Ct -∆∆Ct

November 2008 G. holbrooki

Control 8.3 ± 0.5 43.0 ± 0.4 (2) 34.7 ± 0.6 0.0

Sandfilter 8.4 ± 0.6 42.9 ± 1.2 (8) 34.5 ± 1.3 0.21

Final Effluent 8.4 ± 0.4 43.2 ± 1.2 (4) 34.8 ± 1.3 -0.12

Positive Control 8.4 ± 0.8 33.8 ± 2.9 (9) 25.5 ± 3.0 9.2

February 2009 M. fluviatilis

Control 17.2 ± 0.4 26.6 ± 3.6 9.4 ± 3.6 0.0

Sandfilter 16.9 ± 0.3 28.1 ± 3.9 11.2 ± 3.9 -1.8

Final Effluent 17.2 ± 0.8 28.6 ± 4.1 11.6 ± 4.1 -2.1

Positive Control 16.4 ± 0.5 21.4 ± 2.1 5.0 ± 2.1 4.5
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DISCUSSION
Although the concentrations of BPA were elevated in the control tank treatments the measured 
concentration was unlikely to cause up-regulation of vtg in the fish in the two fish exposure 
experiments. Studies on the Japanese medaka (Oryzias latipes), the fathead minnow (Pimephales 
promelas) and Chinese loach (Misgurnus anguillicaudatus) have shown that BPA is only weakly 
estrogenic in vivo (Kang et al. 2002; Lv et al. 2007; Sohoni et al. 2001). The measured concentration 
of BPA in the control tank treatments in November (2237 ± 227 ng/L) was 7 to 1400 times lower 
than BPA concentrations demonstrated to induce vtg up-regulation in other fish species. 

Based on the potency of BPA as measured in the two-hybrid yeast assay, it would be expected 
that the concentrations of BPA in the control tank treatments would produce at best a maximum 
response of 1.0 ng/L EEq. As the medER yeast is more sensitive to synthetic phenols than the hER 
yeast, its response for the control tank was higher than that for the hER yeast assay. Conversely, 
in the positive control tank, the higher response in the hER than that in the medER yeast assay 
was due to the dominance of the steroidal estrogenic compound E2 driving the high response. The 
actual responses of both the hER and medER two-hybrid yeasts were higher than what would be 
predicted from the concentrations of the measured chemicals. As such, it is suspected that the 
two-hybrid yeast assay may overestimate endocrine disruption (ED) risk as the vtg up-regulation 
did not indicate the same differences between the control and treatment tank samples. This result 
is in contrast to what has been reported in a review that summarised the findings of wastewater 
studies correlating in vitro and in vivo derived data that showed that bioassays underestimated 
VTG response in whole organisms and caution is warranted with interpretation (Schlenk 2008). 
Application of partial fractionation of wastewater effluent extracts demonstrated the YES assay 
response was ten times less than that of plasma VTG induction in Japanese medaka (Huggett et al. 
2003). The overestimation of ED risk by the two-hybrid yeast assay may be due to the combined 
effects of greater sensitivity to synthetic phenols and the clean-up procedure utilised in the current 
study to reduce the toxicity of the sample extracts to the yeast. The YES assay has also returned 
positive results for sewage effluents that did not elicit vtg up-regulation in male rainbow trout 
(Oncorhynchus mykiss) (Aerni et al. 2004) indicating it may also be a function of differential 
sensitivities in eliciting vtg up-regulation between different species of fish.

Potential overestimation of estrogenic potential derived from the two-hybrid yeast is an important 
consideration when evaluating the results of the in vitro bioassays without the support of chemical 
analysis or in vivo testing. However, the greater sensitivity of the two-hybrid yeast assay to variations 
in chemical concentrations make it a useful tool when comparing removal efficacy between sewage 
treatment stages. For example, in this study the two-hybrid yeast bioassays  distinguished a difference 
in ED risk between the sandfilter and final effluents, which was matched by differences in the 
concentrations of the measured EDCs. The in vivo bioassay was less sensitive than the yeast assays 
as neither mosquitofish nor rainbowfish males showed significant up-regulation of vtg compared 
with controls. This is somewhat surprising considering the sandfilter effluent contained traces of E1 
in the mosquitofish exposure experiment. However, while the potency of E1 for vtg up-regulation 
in male mosquitofish is unknown, in other fish species the potency of E1 is significantly less than 
E2 in vivo (Routledge et al. 1998), so it is likely the concentrations of E1 detected in the sandfilter 
effluent were too low to up-regulate vtg in the exposed mosquito fish. 

The estrogenic potencies of various EDCs will vary between species. Alkylphenol ethoxylate 
(APEO) degradation products, including 4NP and 4tOP, are at least 10,000 times lower in potency 
than E2 in the rainbow trout (O. mykiss) hepatocytes (Jobling et al. 2006), and the LOECs for NP 
and OP range between 1-100 µg/L in three different fish species (Mills and Chichester 2005). 
The fact that E2 concentrations of 20 ng/L did not significantly up-regulate mRNA vtg in male 
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G. holbrooki (Leusch et al. 2005b) also supports the conclusion that the combined concentration 
of xeno-estrogens measured in the sandfilter effluent in this study was not sufficient to up-regulate 
vtg in exposed male mosquitofish. 

Mosquitofish, including G. holbrooki and the closely related Gambusia affinis, have been used 
in several studies assessing estrogenic ED from exposure to treated sewage effluent (Batty and 
Lim 1999; Leusch et al. 2006; Rawson et al. 2008). G. affinis is a sexually dimorphic genus that 
undergoes gender differentiation within the first few days after birth (Koya et al. 2003). Male 
mosquitofish develop an elongated anal fin called the gonopodium, which is used to transfer sperm 
packets to the female gonopore during copulation. Developmental studies using juvenile males have 
demonstrated that dietary exposure of G. affinis to EE2 (Angus et al. 2005) and waterborne exposure 
of male G. holbrooki to E2 (Doyle and Lim 2005; Rawson et al. 2008) affects the development 
of the gonopodium. Exposure to estrogenic compounds has also been shown to decrease sexual 
activity and impregnation success by adult males, regardless of whether the estrogenic exposure 
occurred during or after full sexual development (Doyle and Lim 2005; Rawson et al. 2008). The 
lowest concentration of E2 where developmental and behavioural abnormalities were detected was 
100 ng/L and 20 ng/L respectively (Doyle and Lim 2002; Doyle and Lim 2005). vtg mRNA was 
significantly up-regulated in male G. holbrooki following 8-day exposure to 250 but not 20 ng/L 
E2 (Leusch et al. 2005b). This GGSTP study demonstrates that exposure to 107.6 ± 32.9 ng/L 
E2 can also produce significant vtg up-regulation in male G. holbrooki. The actual LOEC for vtg 
up-regulation in male mosquitofish is therefore likely to be above 20 ng/L but below 108 ng/L E2.

M. fluviatilis is a native Australian fish species that has been investigated as a potential biomonitor 
for endocrine disruption. A baseline study (Pollino et al. 2007) found that exposure of M. fluviatilis 
to high E2 doses (1000 ng/L) reduced the number of eggs laid by females, although the hatchability 
and size of the larvae appeared not to be affected. Phosphoprotein, a surrogate for VTG, was found 
to be up-regulated in male fish after 14 days of waterborne exposure at concentrations as low as 
30 ng/L E2. In the testis, γ-glutamyltranspeptidase activity (an indicator of spermatogenesis), was 
reduced after three days of exposure to 30 ng/L E2, but after 14 days of exposure, only fish exposed 
to 1000 ng/L E2 were significantly affected. In another study, the VTG protein was detected in the 
liver of male M. fluviatilis exposed for 7 days to 500 ng/L of waterbourne E2 but not 50 ng/L E2 
(Woods et al. 2009). While other markers of estrogenic ED require exposure to concentrations of 
at least 30 ng/L E2, hepatic vtg mRNA modulation appears to be a very sensitive endpoint, with 
a LOEC of 10 ng/L and a calculated EC10 of 3.7 ng/L (Woods and Kumar 2011). This was three 
times more sensitive than ELISA derived protein up-regulation but the two were strongly correlated. 

Vitellogenin up-regulation as a biomarker of higher-level biological implications such as 
developmental and reproductive abnormalities varies greatly between species. Some studies have 
found vtg up-regulation to be more sensitive than physiological, behavioural or reproductive end-
points (Kang et al. 2003; Sohoni et al. 2001), while others have found other end-points to be more 
sensitive than vtg up-regulation (Thorpe et al. 2009). In male rainbowfish, vtg up-regulation has been 
shown to be a more sensitive indicator of exposure to EDCs than reproductive measures (Pollino 
et al. 2007). In male mosquitofish, the situation is less clear, as sexual behaviour is suppressed at 
20 ng/L of E2, but the impregnation rate of females is not significantly reduced until 100 ng/L E2 
(Doyle and Lim 2005). This suggests that vtg up-regulation is as sensitive as reproductive output, but 
not as sensitive as sexual behavioural modification. However, the lack of vtg up-regulation in either 
species when exposed sandfilter or final effluents from the GGSTP does indicate that ED is unlikely 
to occur in fish exposed to the final treated effluent from GGSTP advanced tertiary treatment plant. 

Numerous studies have demonstrated that the release of treated sewage effluent into waterways 
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is associated with increased vtg up-regulation or the intersex (ovotestis) condition in fish studies 
(Bjerregaard et al. 2006; Diniz et al. 2005; Ma et al. 2005; Porter and Janz 2003; Scott et al. 2006; 
Thorpe et al. 2009). However, these studies have not considered the EDC removal efficacy of the 
treatment technologies employed within the STPs being studied. 

Although activated sludge treatment is the most common treatment employed in STPs, other 
treatments and technologies can reduce dramatically the concentrations of different EDCs in final 
effluents discharged to the environment. For example, the inability of trickling filters to reduce 
the concentration of EDCs and vtg up-regulation in fish exposed to STP effluent at the outfall, and 
downstream from it, was attributed to the volume and poor quality of the final effluent (Vajda et 
al. 2008). Many advanced treatment technologies are highly effective at removing EDCs, but few 
studies have used in vivo endpoints to assess the ED risk of effluents subjected to advanced tertiary 
treatment technologies. Vajda et al. (2015) evaluated endocrine disruption in adult males of the 
native Australian Murray River rainbowfish (Melanotaenia fluviatilis) exposed to effluent from an 
activated sludge WWTP and water from the Murray River during a 28-d, continuous-flow, on-site 
experiment. Anti-estrogenicity of effluent samples was detected in vitro using YES bioassays (yeast 
estrogen screen) throughout the experiment, but estrogenicity was limited to the first week of the 
experiment. Plasma vtg concentrations and expression of vtg messenger RNA in liver were not 
significantly affected in fish by 28-day exposure to WWTP effluent. Although no significant vtg 
induction was observed, there was significant suppression of spermatogenesis in fish exposed to 
wastewater effluent after a 28-d exposure (Vajda et al. 2015). The observed inhibition of gonadal 
function could be related to the strong anti-estrogenic activity detected by the in vitro assay in the 
WWTP effluent. In the present study, anti-estrogen activity and fish histopathological analyses were 
not carried out. It was reported that the addition of a sandfilter stage to conventional activated sludge 
treatment improved general water quality and further reduced the concentrations of E1 and BPA, 
but ozonation was required to eliminate vtg up-regulation in juvenile rainbow trout (Gunnarsson 
et al. 2009). Our results demonstrate that the effluent collected after sand filtration did not contain 
EDCs at concentrations high enough to up-regulate vtg in mosquitofish and rainbowfish males.

The continuous backwash sandfilter treatment stage at GGSTP did not provide additional removal 
of EDCs beyond that achieved by the preceding activated sludge, denitrification and clarification 
stages (Hamilton et al. 2016). Activated sludge treatment removed the largest proportion of EDCs and 
reduced their concentrations below those that up-regulate vtg in mosquitofish and rainbowfish males. 
Assessing the efficacy of STPs remains a priority to minimise the risk to receiving environments 
and the use of biological methods covering multiple mechanisms of toxicity and new approaches 
like transcriptomics will assist managers optimising treatments (Qin et al. 2021). 
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